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Abstract

This work studies the vortex-induced vibrations of an elastically mounted rigid cylinder able to move in-line and

transverse to the flow, with equal mass ratio and natural frequencies in both directions. A compact and simple set-up

using torsion springs was designed for this purpose. Although the mass ratio is close to 1, the mass-damping parameter

a is high enough so that the system exhibits a two-branch type response. Consequently, the ‘super-upper’ branch is not

observed, and the peak transverse response is unaffected compared to transverse-only oscillations. We also note that

measurement points associated with a ‘2S’ mode of vortex formation are found in the ‘2P’ area of the map of vortex

regimes. This discrepancy is discussed in light of the influence of streamwise motion on the critical curve separating the

‘2S’ and ‘2P’ regimes.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Vortex-induced-vibrations (VIV) cause problems in many areas related to offshore engineering, particularly to the

design of the risers and pipelines in free spans. Recent model tests on free-spanning pipelines made for the Ormen Lange

development project have shown that the combined cross-flow and in-line motions are important. This means that an

analysis where the in-line motion is disregarded is found to be insufficient. Other previous tests have revealed that the

in-line VIV contributes equally much to fatigue as cross-flow VIV. Furthermore, there is an interaction between the two

degrees of freedom, so they cannot be simply superimposed. This is indeed the case when there is an initial sag as on a

pipeline in free span. A combined in-line and cross-flow motion, in high Reynolds number flow, represents an important

challenge relevant to fundamental understanding as well as to engineering practice. The Reynolds number in the present

experiments is above 1� 104.

The research accomplished in the past three decades on VIV has been reviewed in Williamson and Govardhan (2004).

Up to 2004, a majority of studies focused on transverse oscillations only. In the case of the free oscillations of elastically

mounted rigid cylinders, the amplitude and frequency response was thoroughly investigated by Govardhan and

Williamson (2000), who emphasized the distinction between high and low mass-damping systems. In the course of our

work, two relevant papers have been published that extend this analysis. With help of a magnetic eddy current damping
e front matter r 2008 Elsevier Ltd. All rights reserved.
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system, Klamo et al. (2006) studied the influence of the structural damping z on the different response branches,

separately from the mass ratio m�. The ground-breaking work by Govardhan and Williamson (2006) is also based on

damping control: being able to impose both negative and positive mechanical damping on their system, the authors

revealed that the peak-amplitude response depends exclusively on the Reynolds number and the mass-damping

parameter a. They proposed a functional relation of the form A� ¼ gðaÞf ðReÞ and defined a ‘modified’ Griffin plot

where peak amplitudes A�M are now independent of the Reynolds number. This procedure was found to collapse

together a large number of peak-amplitude data that were previously scattered in the traditional Griffin plot.

Early two-degree-of-freedom experiments combining cross-flow and streamwise oscillations suggested that the ability

of the system to move in the streamwise direction has little effect on the system response. In Moe and Wu (1990), a

cylinder was attached to a rig functioning as a parallelogram, and the in-line motion could be either restrained or

spring-supported. The mass ratios were very different in the two directions and the natural frequency ratio was set to

f X=f Y ¼ 2:18. Slightly higher amplitudes were found in presence of the in-line motion, and transverse force

measurements along the span indicated a better correlation. A different mounting was used in the work by Sarpkaya

(1995) with two bearing systems riding on top of each other. Here also the mass ratios were quite different in the two

directions, but the natural frequencies could be adjusted. For f X ¼ f Y , the amplitude was increased by 20% compared

to the transverse-only case.

A set of two-degree-of-freedom results was presented in Pesce and Fujarra (2002) for a cantilevered rigid cylinder

connected to an elastic support, with adjustable natural frequencies f X and f Y and a mass ratio almost similar in the

two directions (m� ¼ 10 and 13). The amplitude response showed evidence of the different branches, and once again

the effect of streamwise oscillations was limited to a small increase in the transverse response.

In their forced-oscillations experiments, Jeon and Gharib (2001) studied the effect of streamwise oscillations on the

near-wake, in relation to the experiments by Williamson and Roshko (1988) for transverse-only oscillations. They

found that in the ‘2P’ vortex regime, the additional vortex composing each pair was inhibited by the in-line oscillations,

although the phase shift in the primary vortex shedding was still observed. For the ‘2S’ mode, an increase in the

coherence of the vortex shedding was noted, in agreement with the observations by Moe and Wu (1990).

A comprehensive study on the response of a rigid, elastically mounted cylinder in two degrees of freedom (2-dof) was

presented by Jauvtis and Williamson (2004), with equivalent mass ratios and natural frequencies in both directions and

a low structural damping. An ingenious solution was developed to satisfy these conditions: the vertical cylinder was

suspended to the roof by long cables like a pendulum, and gravity acted as the restoring force. Consistently with the

previous works, 2-dof motion resulted in a marginal increase in the transverse response for moderate mass ratios,

greater than 6. For m�o6, however, the system response was drastically modified: the upper branch was replaced by a

new response branch (denoted ‘super-upper’) characterized by different vortex dynamics and transverse amplitudes

reaching 3 diameters peak-to-peak! These results, of major implication for the design of numerical codes predicting

VIV, were confirmed by Pesce and Fujarra (2005) in the case of a flexible cantilevered cylinder with low mass ratio and

low structural damping. Such amplitudes were also found in Tryantafyllou et al. (2004) for a flexible cylinder with

pinned ends towed in a tank.

We here present observations from a laboratory campaign on VIV. The experiments were set up to address some

particular challenges that were communicated from industry. The experiments are designed with a moored rigid

cylinder section that can oscillate in two degrees of freedom—cross-wise and in-line—while moving forward with

constant speed in a wave tank where the water is otherwise at rest. Requirements included a mass ratio close to unity

ðm� ¼ 1:04Þ, and that the mass-spring system has the same mass coefficient and natural frequency in the two directions

of motion. The Reynolds number range was 13 000218 600. An original and compact set-up was designed to satisfy

these constraints, making use of torsion springs instead of linear springs. The investigation focuses on the cylinder

response in amplitude and frequency, and the analysis is supported by flow measurements in the near-wake using

particle image velocimetry (PIV).
2. Experimental set-up

2.1. Oscillating system

Experiments were carried out in a 25m long water towing tank, with 51 cm width and 81 cm depth. Fig. 1 shows a

side view of the mounting. A rigid, hollow circular cylinder made of plexiglas (span L ¼ 47:5 cm, diameter d ¼ 8 cm,

corresponding aspect ratio AR ’ 6) is suspended at each end to three torsion springs, placed around it on 10mm-thick

supporting plates. Both plates are mounted vertically on a rigid rig towed along the tank, allowing the cylinder to

undergo vortex-induced oscillations in an X2Y plane.
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Fig. 1. Side view of the experimental set-up, showing the disposition of the plate springs around the cylinder.
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Fig. 2. (a) Close-up on a torsion spring. Wheel radius is 36mm, nominal stiffness 12:5Nm�1 for one spring. (b) Front view of the

mounting, showing the disposition of the supporting plate. The gap between the cylinder edge and the plate is 4mm, and 5mm between

the plate and the side wall of the tank.
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When submerged in the tank, the hollow cylinder fills with water, yielding a mass ratio m� very close to unity. Thirty-

five cm long inextensible wires connect the cylinder to the plate springs, which have a wheel radius of 3.6 cm. The

arrangement of the springs is adjusted so that, for any small displacement in the X2Y plane, the restoring force points

towards the position of equilibrium with the same constant k, regardless of direction. For excursions larger than one

diameter the direction of the spring force depends on the actual position of the cylinder with respect to the springs. This

results in a slight asymmetry in the cylinder motion, with one lobe of the figure-of-eight being somewhat larger than the

other. However, the time traces of the horizontal and vertical displacements presented in Fig. 3 do not reveal any

significant subharmonic response resulting from the coupling between the two degrees of freedom.

It should be noted that the cylinder is not restrained to move in translation in the X2Y plane only although these are

the motions of interest here. It can as well rotate in roll and pitch motions around the X and Y axes. In order to limit

contacts with the supporting plates, a 4mm gap separates the cylinder edges from the plates (see Fig. 2).

The relatively small aspect ratio raises questions about the importance of end effects to the global results in these

experiments. The limited aspect ratio increases the spanwise coordination of the vortex shedding by suppressing



ARTICLE IN PRESS
A. Sanchis et al. / Journal of Fluids and Structures 24 (2008) 907–919910
cross-flow along the cylinder axis in the vicinity of the plates. However, in the study by Szepessy and Bearman (1992) it

was shown that for Reynolds numbers of interest here ðRe ¼ 1:321:9� 104Þ the fluctuating lift coefficient c0L increased

only by 12% for AR ¼ 6 compared to AR ¼ 11. Furthermore, c0L was found to be almost constant along the span.

Thus, one can expect that the impact of an aspect ratio of 6 on the VIV response of the cylinder is minimal. A

confirmation of this was provided in Govardhan and Williamson (2006), where the peak transverse amplitude of an

elastically mounted cylinder was nearly unaffected as the aspect ratio varied between 7.2 and 22.7. The same authors

found that blockage had no effect either on the amplitude response between 5% and 14%. Our blockage ratio is 10%.

Measurements of the natural frequency in air f Nv and the damping ratio z are reported in the Appendix. The

relatively high structural damping is due to the mechanical friction of the metal strip inside the torsion springs

(see Fig. 2). A total spring constant of 35:3Nm�1 was measured during decay tests in air. The structural characteristics

of the system are summarized in Table 2, in the Appendix.
2.2. Cylinder motion measurements

The amplitude and frequency of the system response were investigated for reduced velocities ranging from 4.8 to 6.9.

Corresponding Reynolds numbers span from 13 000 to 18 600. In this range of U�, the cylinder experienced a two-

dimensional motion along the X and Y axes with only weak roll and pitch motions, as documented below. The limits

regarding the range of investigation were imposed by the mounting itself. For U� below 4.8, self-induced oscillations

were intermittent, due to the high resistance of the plate springs. On the other hand, for reduced velocities exceeding 7,

the cylinder experienced a significant roll motion leading to contacts with the supporting plates.

The cylinder trajectory was obtained from video recordings, using a camera towed along with the rig. The camera was

placed with an angle to the cylinder axis in order to track simultaneously the displacement at both extremities.

Following the initial acceleration of the rig, stable oscillations were observed after a short transient phase, typically 10

periods long. For each towing speed, three runs were performed providing around 40 cycles of periodic motion.

A comparison of the vertical and horizontal displacement at the two ends is presented in Fig. 3 for U� ¼ 5:9. The
extremities of the cylinder are moving almost in phase and with similar amplitudes, showing that the cylinder motion is

essentially two-dimensional. The average phase lag between the vertical displacement at each end is comprised between

2% and 3% of the period of oscillation. For U� in the range 4.8–6.9, the peak value of the phase lag is up to 10%

(see Fig. 4(b)). Although the set-up allows rotations around the X and Y axes, these motions are thus marginal

compared to the main oscillations in the vertical plane. One can conclude that for the range of velocities concerned, the

hydrodynamic forcing is well correlated along the span.

The cylinder amplitude of motion was calculated at mid-span by averaging the data from the two cameras:

A�y ¼
y1 þ y2
2d

; A�x ¼
x1 þ x2

2d
,

where ðx1; y1Þ and ðx2; y2Þ denote the amplitudes at extremities 1 and 2, respectively. The standard deviation of A�y
(in % of the mean value) is plotted in Fig. 4(a). A high variability was recorded at the lower speeds due to the

important friction produced by the plate springs. As the hydrodynamic forcing increases and the system gains

momentum, the standard deviation drops down to 5% between U� ¼ 5:5 and 6.1. The cylinder oscillations become

less regular as U� approaches 7, an observation that can be related to the occurrence of roll motion for higher

speeds.
2.3. PIV set-up

A two-dimensional PIV technique was used to extract the flow velocity field in a vertical plane situated at mid-span.

Images were obtained with a Photron APX CMOS camera coupled with a pulsed Nd:YAG laser, at 10ms interval,

which yielded a particle displacement of 6–9 pixels between two subsequent images. The MatPIV software, described in

Sveen (2004), used a discrete window-offset algorithm with two passes to cross-correlate the images, ending with

32� 32 pixels subwindows. The cylinder section was masked during the cross-correlation step. An accuracy of less than

0.1 pixels (2%) is expected for the velocity, and 10% for the vorticity, although these values should be affected in

regions of the flow presenting high velocity gradients; see e.g. Scarano (2002).

A 50% overlapping between the subwindows yielded a spatial resolution of 4mm. The vorticity field was computed

using a centred three-points scheme. The PIV system was fixed with respect to the tank, so that for each run about half a

cycle of motion only was recorded. On the other hand, the light sheet characteristics (width, mirror alignment, angle to

the flow) could be carefully tuned and maintained during the experiments.
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Fig. 3. Time traces of the displacement at the extremities of the cylinder, for U� ¼ 5:9.
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3. Results

3.1. X2Y trajectories

A good approximation of the in-line and transverse displacements at mid-span is provided by the following

equations:

xðtÞ=d ¼ A�x sinð4pf extþ yÞ; yðtÞ=d ¼ A�y sinð2pf extÞ,

where the quantities are defined in Table 1. The X2Y trajectory shapes plotted in Fig. 5 superpose all data available at

these speeds and were used to estimate the phase angle y between the in-line and transverse motions.An 80� shift exists

with the results by Jauvtis and Williamson (2004). The difference is striking when comparing the actual shape of the

cylinder path at the peak transverse amplitude: while the above-mentioned authors report a crescent pattern, we

observe a figure-of-eight with large lobes. These observations reflect the difference in the timing of the vortex shedding

in the two cases, and are further discussed in Section 4.

The periodicity of the oscillations at different reduced velocities can be described in a qualitative way by observing

the actual cylinder path. At U� ¼ 5:1 and 5.7 the repeatability is good, but at U� ¼ 6:5 the cylinder trajectory exhibits

more variability. As pointed out in Fig. 4, changes in the amplitude and (to a lesser extent) the shape occur from one

cycle to the other. The periodicity of oscillations continues to deteriorate as the reduced velocity is increased beyond 6.5.

A significant roll motion appears for U� exceeding 7.
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Table 1

Definitions

X Streamwise (horizontal) direction

Y Transverse (vertical) direction

xðtÞ, yðtÞ Cylinder displacement at mid-span

A�x;y Normalized amplitude of oscillation at mid-span

m� Ratio of oscillating mass over displaced mass

k; b Spring and damping constant in both directions

mA;CA Potential added mass and added mass coefficient ðCA ¼ 1Þ

z ¼
b

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðmþmAÞ

p Damping ratio

a ¼ ðm� þ CAÞz Combined mass-damping parameter

f ex Vibration frequency

f Nw ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

mþmA

r
Natural frequency in still water

f Nv ¼
1

2p

ffiffiffiffi
k

m

r
Natural frequency in vacuum

f � ¼
f ex

f Nw

Reduced vibration frequency

f s Strouhal frequency

U� ¼
U

f Nwd

Reduced velocity in water
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Fig. 5. Top: trajectory shapes corresponding to U� ¼ 5:06, 5.69 and 6.52; the arrow indicates the direction of the flow relative to the

carriage. Bottom: phase angles between X and Y motion ð�Þ, compared to the results by Jauvtis and Williamson (2004) (thick line).
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Also visible in Fig. 5 (for U� ¼ 5:69) is the slight asymmetry between the lobes of the figure-of-eight, whose origin is

discussed in Section 2.1. As a consequence, we observed that the vortex shed from the lower shoulder of the cylinder is

slightly stronger than its counterpart at the upper one. However, we believe that this does not affect the main

conclusions presented here.
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3.2. Amplitude and frequency response

The amplitude, computed by the average of the top 10% values of A�y and A�x recorded at each speed, and frequency

response are plotted in Fig. 6. We compare our data to the low mass-ratio case in Jauvtis and Williamson (2004),

hereafter denoted by JW (2004). Their mass-damping parameter and Reynolds number are different with a ¼ 0:013 and

Re ’ 5800 at maximum response, while we have a ¼ 0:093 and Re ’ 18 600. Mass ratios are close with m� ¼ 2:621:04,
and in both experiments the natural frequency and the oscillating mass are equal in the X and Y directions. The

amplitude response in JW (2004) for a moderate mass ratio m� ¼ 7:0 is also shown to illustrate the difference with the

low mass-ratio case in their experiments.

We observe that the peak transverse amplitude measured in our experiments is 50% lower than the top of the super-

upper branch in JW (2004) (Fig. 6). The reason for this discrepancy is analysed in Section 4 in light of the recent work

by Govardhan and Williamson (2006). However, in the horizontal direction the amplitude response is similar

ðA�x ’ 0:3Þ. The in-line motion is thus proportionally larger in our experiments, with A�x=A�y reaching 0.28, against 0.2

for JW (2004).

The frequency response suggests that all points of measurements belong to the same branch, with f � increasing

continuously from 0.85 ðU� ¼ 4:8Þ to 1.16 ðU� ¼ 6:9Þ. Flow visualizations (see Section 3.3) show that the vortex regime

corresponds to the initial branch. In agreement with the results reported for systems characterized with a high mass-

damping parameter (e.g. Feng, 1968), the amplitude is expected to drop to the lower branch for higher reduced

velocities. The transition coincides with a ‘jump’ in the frequency response across the natural frequency in water and a

shift in the mode of vortex formation (Govardhan and Williamson, 2000), from the ‘2S’ to the ‘2P’ regime.
2 4 6 8 10 12 14
0

0.5

1

1.5

0

0.2

0.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

U*

f *
A

x*
A

y*

fNw

fNv

f * = 0.159U*
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Interestingly, in the results reported in Fig. 6, f � passes continuously across 1. In the JW (2004) study, the transition in

vortex regimes occurs between f � ¼ 0:8 and 0.9, while in our case the initial branch persists beyond f � ¼ 1:16.
A linear fit of the frequency response in the range U� ¼ 527 shows that f � ’ 0:159�U� for our data. For

transverse-only oscillations and under conditions of low mass-damping, Govardhan and Williamson (2000) showed

that the reduced frequency increased linearly with U� in the upper branch, until the system reached the lower branch.

They derived an experimental relation predicting the position of the lower branch, and thus the slope of f � versus U� in

the upper branch, as a function of the mass ratio. For m� ¼ 1:05 they found a slope of 0.154. This is remarkably close to

our value, in spite of the important differences between the two mechanical systems. The agreement suggests that their

conclusions can be extended to the initial branch for systems with a high mass-damping parameter and a low mass ratio.
3.3. Flow visualization

PIV data were collected for reduced velocities of 4.4, 4.7, 5.1, 5.9, 6.6 and 6.9. Instantaneous velocity fields for

U� ¼ 5:9 and 6.9 are presented in Figs. 7 and 8 with the cylinder halfway between the top and bottom positions, moving
Fig. 7. PIV velocity field at U� ¼ 5:9 with the cylinder at the middle position, moving downwards. Vorticity contours correspond to

od=U ¼ �2:5. Relative to the towing tank carriage, direction of the flow is from right to left.

Fig. 8. Same as Fig. 7, for U� ¼ 6:9.
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downwards. In both figures a strong vorticity concentration indicates the position of the primary vortex originating

from the roll-up of the upper shear layer. Relating these pictures to the extensive descriptions of the ‘2S’ and ‘2P’ modes

found in Govardhan and Williamson (2000) for transverse-only motion, or Jeon and Gharib (2001) for forced 2-dof

vibrations, we clearly identify a 2S pattern for all reduced velocities investigated with PIV. This observation brings

evidence that the response branch described in Fig. 6 corresponds to the initial branch.

One of the observations drawn from the study by Jeon and Gharib (2001) is that the addition of streamwise motion

to their forced oscillations greatly increased the coherence of the vortices in the 2S case. This might explain the clarity of

the vortical structures shown in Figs. 7 and 8, keeping in mind that these are instantaneous flow fields obtained at a

Reynolds number of 15 000.
4. Discussion and conclusion

A compact and simple mounting has been developed to study VIV of a rigid, elastically mounted cylinder in two

degrees of freedom, with equivalent mass ratio and natural frequency in the two directions of motion. The relevant

parameters are m� ¼ 1:04, a ¼ 0:094 and Re ¼ 18 600 at maximum response.

The combination of a very low mass ratio and high structural damping leads to interesting observations: while the

amplitude response seems to correspond to ‘high mass-damping’ systems where the upper branch is absent and the peak

amplitudes are obtained in the initial branch, the frequency response shows strong similarities with the ‘low mass-

damping’ description. The linear relation between f � and U� that characterizes the upper branch in the study by

Govardhan and Williamson (2000) holds here for the initial branch, with the slope corresponding very well for equal

mass ratios. For transverse oscillations only, Govardhan and Williamson (2006) stated that the condition A� ¼ 0:6 may

be used to separate the regimes of three-branch and two-branch responses over a wide range of Reynolds numbers

(from 100 to 100 000). However, the amplitude response data presented here suggest that even with A�y up to 0.9 we

obtain a two-branch response.

Another feature of the present mounting is that rotations around the X and Y axes are not restricted. Below

U� ¼ 6:5, the rolling motion was barely visible and did not seem to affect in any way the main X2Y oscillations.

From U� ¼ 6:5 and up to the maximal reduced velocity investigated ðU� ¼ 6:9Þ, the cylinder started to experience

significant roll at intervals, corresponding to a drop in the transverse amplitude. These events became more frequent

and stronger as the reduced velocity increased, and we stopped when the cylinder started to hit the supporting plates

placed at each side. The investigation by Hover et al. (1998) sheds some light on this point. They studied the correlation

between the forces measured at the two ends of freely vibrating or forced cylinders, and reported a loss of correlation in

the range separating the 2S mode from the 2P mode of vortex formation. Following the results obtained in Techet

et al. (1998) for tapered cylinders, they concluded that this is due to a spanwise transition between the two modes,

with the intermittent appearance of hybrid 2S–2P structures along the span. This loss of flow correlation, as the

system approaches the 2S–2P transition, will in our case trigger the onset of roll motion and disrupt the X2Y

oscillations.

Although the limited range of reduced velocities investigated did not allow us to cover the totality of the initial

branch, we can assume that the last measurement point in Fig. 6 ðU� ¼ 6:9Þ is close enough to the initial-lower branch

transition to report this value in the Griffin plot in Fig. 9, along with classical results for different parameters and

configurations.

With respect to the combined mass-damping parameter a, the present result is situated in-between the ranges

investigated by Feng (1968) and Khalak and Williamson (1999) for transverse-only oscillations. In the case of two-

degree-of-freedom motion, Jauvtis and Williamson (2004) (JW 2004) made a distinction between moderate mass ratios

ðm�46Þ, with peak amplitudes corresponding to the transverse-only results, and low mass ratios ðm�o6Þ yielding

extreme peak amplitudes up to 1.5 diameters in the ‘super-upper’ branch. The difference is illustrated in Fig. 6.

To compare our results, it is necessary to take into account the difference in Reynolds number (Govardhan and

Williamson, 2006). In Fig. 9 our maximum amplitude lies far above the results by JW (2004) obtained at moderate mass

ratios and similar mass-damping, thereby suggesting that the peak transverse amplitude is actually increased by the

combination of a low mass ratio and two-degree-of-freedom oscillations. However, in the ‘modified’ Griffin plot

introduced by Govardhan and Williamson (2006), the difference vanishes and our data actually fall under the

functional representation of the modified amplitude A�M (independent of Reynolds number) versus a (Fig. 10). The peak
amplitude is comparable to the transverse-only case, although our mass ratio is less than 6. In the JW (2004) study the

‘super-upper’ branch is associated with a modification of the vortex dynamics. Instead of the classical 2P mode usually

found in the upper branch for a low mass-damping type of response, they observed a new mode of vortex formation

with triplets of vortices emitted during half a cycle of motion (‘2T’ mode). In addition to the primary vortex originating
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Fig. 10. Modified ‘Griffin’ plot taking into account the effect of Reynolds number. n, Present result; �, super-upper branch from

Jauvtis and Williamson (2004); �, functional relation between A�M and a proposed by Govardhan and Williamson (2006).
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from the roll-up of the shear layer, each triplet consisted of a pair of counter-rotating ‘starting vortices’ created by the

sudden acceleration of the cylinder as the body moves from the extreme positions towards the centre. Obviously, such a

change in the vortex shedding cannot occur here because the maximum amplitudes are obtained in the initial branch,

associated with the 2S mode. Our conclusion is that for systems characterized by a high mass-damping type of response,

the ability to move in-line and cross-flow with a very small mass ratio m� ’ 1 does not affect dramatically the transverse

response.

Finally, in Fig. 11 the response amplitude presented in Fig. 6 is plotted versus the normalized velocity ðU�=f �ÞS, with

the map of vortex regimes by Williamson and Roshko (1988). This choice of parameter allows sets of data obtained

with different mass ratios to collapse together. The presence of all our measurement points (forming the initial branch)

in the 2P area of the Williamson and Roshko map requires some explanation. Govardhan and Williamson (2000) made

a similar observation in their high mass-damping case obtained with 500oReo4000. They noted that the boundaries

between vortex regimes might need to be shifted to take into account the difference in Reynolds number: the map was

drawn from the observation of the wake behind a cylinder at Reynolds numbers between 300 and 1000. The same

argument holds in the present experiments where 13 000oReo18 600.
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Fig. 11. Transverse amplitude response versus normalized velocity ðU�=f �ÞS. Labels: see Fig. 6. The Williamson and Roshko map of

vortex regimes is superimposed in dashed line. The dotted line represents the critical curve by Laneville (2006) for g ¼ 15�.
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Secondly, a recent paper by Laneville (2006) has pointed out the influence of streamwise motion on the critical curve

separating the 2S from the 2P regimes in the Williamson and Roshko map. Based on the experiments by Brika and

Laneville (1995) for a flexible cylinder in an airflow where the plane of vibration could be tilted, the author observed

that the critical curve shifted towards higher reduced velocities as the tilting angle g increased. For g430�, the 2P regime

even ceased to exist. In the case of freely vibrating rigid cylinders with two degrees of freedom and with the same natural

frequency in both directions, tan g ¼ Ax=Ay yields g ¼ 16� in the present experiments. The critical curve found in

Laneville (2006) for g ¼ 15� has been added to Fig. 11. According to the new 2S/2P separation, the lower part of the

response branch described here (up to U� ¼ 5) now falls into the 2S area, in agreement with our PIV observations.

Unfortunately, the critical curves presented in Laneville (2006) are restricted to amplitudes smaller than 0.4.
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Appendix

Free decaying tests in air were performed to determine the structural damping and the effective spring constant of the

system. The cylinder was filled with water and sealed, in order to reach the same oscillating mass as when it is

submerged. It was then suspended to the ceiling with 2.8m long cables to withstand the weight and allow for horizontal

oscillations (see Fig. 12).

The motion of the cylinder, displaced from the position of equilibrium by a distance y0 and then released, obeys the

following equation (for small oscillations):

m €yþ b _yþ k þ
mg

l

� �
y ¼ 0, (A.1)

neglecting dissipation in the pendulum itself. The envelope of maxima is given by: ymax ¼ y0 e
�bo0t, where the following

expressions have been used: o0 ¼
ffiffiffiffiffiffiffiffiffiffi
k0=m

p
, k0 ¼ k þmg=l and b ¼ b=2mo0.

y0 varied from 5.5 to 10 cm during the decay tests to cover the cylinder excursions in the experiments. b is calculated

by plotting lnðymaxÞ as a function of time and measuring the slope, while o0 is directly measured from the decay tests

since b251 ðb ¼ 0:05220:067Þ.
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Fig. 12. Side view of the set-up used for decay tests in air.

Table 2

Characteristics of the oscillating system

Cylinder dimensions (cm) d ¼ 8, L ¼ 47:5
m (kg), m� 2.49, 1.04

k ðNm�1Þ 35:3� 0:3

f Nw, f Nv (Hz) 0.42, 0.60

b ðkg s�1Þ 1:25� 0:15

z 0:046� 0:005
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Due to the strong energy loss in the springs, the range of exponential decay is limited to the three or four first

maxima, after which the oscillations become dominated by the effect of Coulomb-type friction in the springs. As a

result, the uncertainty for the damping b is high. The measured values of k and b are k ¼ 35:3� 0:3Nm�1 and

b ¼ 1:25� 0:15 kg s�1, see Table 2.
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